

Additional Evaluation of Natural Resources Indicators for GO TO 2040 Scenario Planning

Environment and Natural Resources Committee

September 2, 2009

Indicator roster

- Natural resource indicators already considered
 - Land consumption
 - Open space access
 - Imperviousness
 - Sensitive watersheds, watersheds >10% impervious
 - Water use
 - Energy consumption / GHG emissions
 - Air quality
- Additional suggestions from July ENR meeting
 - Wetland impacts
 - Connectivity (and biodiversity)
 - Runoff and pollutant loading

Wetland impacts

- Used National Wetlands Inventory + ADID studies from Kane and McHenry Counties
- If subzone was >10% wetland by acreage, then considered a significant wetland area
- Household growth in wetland areas assumed to increase likelihood of impact

Results

	Reference	Reinvest	Preserve	Innovate
Household growth	786,385	786,385	786,385	786,385
Household growth in	, 55,565	, 55,565	, 55,565	, 55,565
wetland areas	134,829	87,022	117,126	134,829
Percent of growth in				
wetland areas	17.1%	11.1%	14.9%	17.1%
Difference from Reference		(47,807)	(17,704)	-
% Difference		-35.5%	-13.1%	0.0%

Connectivity

- Core concept is really biodiversity
- No single metric represents this; best proxy perhaps connectivity
- Examined metrics from FRAGSTATs:
 - Percentage of like adjacencies:

PLADJ =
$$\left(\frac{\mathbf{g}_{ii}}{\sum_{k=1}^{m} \mathbf{g}_{ik}}\right) (100)$$

Patch cohesion index:

COHESION =
$$\left[1 - \frac{\sum_{j=1}^{n} p_{ij}}{\sum_{j=1}^{n} p_{ij} \sqrt{a_{ij}}} \right] \left[1 - \frac{1}{\sqrt{A}} \right]^{-1} . (100)$$

Connectivity assessment of GIV Resource Protection Areas

- Looked at land cover from 2001 – "green" areas are undeveloped, nonagricultural
- Could take this land cover base and overlay expected changes from household/job growth

Results

Discussions with biologists

- Combined observations from Doug Stotz, Laurel Ross, Mike Ward:
 - Don't overstate the value of a single metric (a metric by itself is not a straight-forward measure)
 - Best to use multiple metrics (to provide multiple perspectives and address more sophisticated questions)
 - It is important that a metric is doing more good than harm (i.e., not resulting in land-use decisions that could be detrimental to certain species)
 - It might be helpful to create "scores" for different RPAs (i.e., prairie parklands, calumet region, Des Plaines river valley)
 - Connectivity doesn't solve problems for birds, and there are no large mammals that need large ranges as there are out West

Summary

- Approach connectivity qualitatively
- Use connected network from Green Infrastructure Vision to provide form

Runoff

First attempt:

- Convert changes in household/jobs by subzone into changes in detailed land use categories
- Estimate base year and 2040 annual runoff by scenario
- Problems:
 - · CN values: residential lot size assumptions and farmland runoff
 - Redevelopment

Second attempt:

- Aggregate land use categories to urban, ag, water/wetland, etc.
- Estimate base year and 2040 annual runoff by scenario
- Problems:
 - Very minor changes from base year to 2040 while imperviousness increases substantially (~5% versus ~30%)

Runoff results

Runoff (ac-ft)	BASE	REFERENCE	REINVEST	PRESERVE	INNOVATE
Urban	3,487,725	5,542,856	4,913,633	4,972,317	5,302,099
Cropland	2,430,393	1,034,437	1,426,731	1,219,523	1,091,091
Open space	1,246,025	969,983	1,072,499	1,150,412	1,057,118
Wat/wet	378,659	378,659	378,659	378,659	378,659
Total	7,542,803	7,925,935	7,791,522	7,720,912	7,828,966
Change to 2040		5%	3%	2%	4%

Nutrient loading

Nitrogen (lb/yr)	BASE	REFERENCE	REINVEST	PRESERVE	INNOVATE
Urban	6,639,811	10,552,297	9,354,404	9,466,124	10,093,952
Cropland	18,507,590	7,877,303	10,864,645	9,286,745	8,308,721
os	1,821,081	1,417,641	1,567,469	1,681,341	1,544,990
Wat/wet	_	-	-	-	-
Total	26,968,481	19,847,241	21,786,519	20,434,211	19,947,663
Change to 2040					
		-26%	-19%	-24%	-26%
Phosphorus (lb/yr)					
Urban	1,897,089	3,014,942	2,672,687	2,704,607	2,883,986
Cropland	4,296,405	1,828,660	2,522,150	2,155,852	1,928,810
os	453,210	352,806	390,094	418,433	384,499
Wat/wet	0	-	-	-	-
Total	6,646,703	5,196,408	5,584,931	5,278,892	5,197,296
Change to 2040					
		-22%	-16%	-21%	-22%

Summary

Use imperviousness as a proxy of water resource impacts

Questions?

Jesse A. Elam, AICP Chicago Metropolitan Agency for Planning

jelam@cmap.illinois.gov 312.386.8688

